The missing ingredient in the linear approximation of the λ -calculus and other autobiographical stuff

Rémy Cerda, CNRS, IRIF (hidden in office 3057 but please visit)

Journée de rentrée PPS Paris, Nov. 28, 2024

CONTENTS

The main story Approximating the λ -calculus? What's missing Approximating the λ -calculus! Everything we want comes as corollaries The bonuses What I've been working on

What I'm working on

What I'd like to work on

THE MAIN STORY

Historically, a "semantic" motivation: to approximate the total information generated by *M* using finite pieces of information

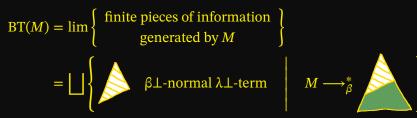
Historically, a "semantic" motivation: to approximate the total information generated by *M* using finite pieces of information

("The total information generated by *M*": the **Böhm tree** of *M*.)

"Syntactic" approximation theorem:

 $BT(M) = \lim \left\{ \begin{array}{c} \text{finite pieces of information} \\ \text{generated by } M \end{array} \right\}$

"Syntactic" approximation theorem:



 $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$

 $BT(M) \simeq nf\left(\sum_{\substack{\text{opproximates of } M}} \frac{\text{the multilinear}}{approximates of } M\right)$ $\simeq nf(\mathcal{F}(M)).$

 $BT(M) \simeq nf\left(\sum_{\substack{n \in \mathcal{T}(M)}} \frac{\text{the multilinear}}{n \text{ approximants of } M}\right)$ $\mathcal{T}(BT(M)) = nf(\mathcal{T}(M)).$

 $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$

 $\mathcal{T}(\mathrm{BT}(M)) = \mathrm{nf}(\mathcal{T}(M)).$

... where $\mathcal{T} : \Lambda_{\perp} \to ?$ is defined by

 $\mathcal{T}(x) \coloneqq x$ $\mathcal{T}(\lambda x.M) \coloneqq \lambda x.\mathcal{T}(M)$

$$\begin{aligned} \mathcal{T}(MN) &\coloneqq \mathcal{T}(M) \sum_{n \in \mathbb{N}} \frac{1}{n!} \mathcal{T}(N)^n \\ \mathcal{T}(\bot) &\coloneqq 0 \end{aligned}$$

"Commutation" theorem (Ehrhard-Regnier'06): $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$ $\mathcal{T}(\mathrm{BT}(M)) = \mathrm{nf}(\mathcal{T}(M)).$... where $\mathcal{T} : \Lambda_{\perp} \to ?$ is defined by $\mathcal{T}(x) \coloneqq x$ $\mathcal{T}(\lambda x.M) \coloneqq \lambda x.\mathcal{T}(M) = \sum_{s} a_{s} \cdot \lambda x.s$ $\mathcal{T}(MN) \coloneqq \mathcal{T}(M) \sum_{n \in \mathbb{N}} \frac{1}{n!} \mathcal{T}(N)^{n} = \sum_{s} \sum_{n \in \mathbb{N}} \sum_{t_{1}, \dots, t_{n}} \frac{a_{s} \times \prod_{k} b_{t_{k}}}{n!} \cdot s[t_{1}, \dots, t_{n}]$ $\mathcal{T}(\lambda x.M) \coloneqq \lambda x.\mathcal{T}(M)$ $\mathcal{T}(\bot) \coloneqq 0$

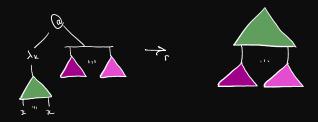
"Commutation" theorem (Ehrhard-Regnier'06): $BT(M) \simeq nf\left(\sum_{\text{approximants of } M} \text{the multilinear}\right)$ $\mathcal{T}(\mathrm{BT}(M)) = \mathrm{nf}(\mathcal{T}(M)).$... where $\mathcal{T}: \Lambda_{\perp} \to \text{is defined by}$ $\mathcal{T}(x) \coloneqq x$ $\mathcal{T}(\lambda x.M) \coloneqq \overline{\lambda x.\mathcal{T}(M)} = \sum_{s} a_{s} \cdot \lambda x.s$ $\mathcal{T}(MN) \coloneqq \mathcal{T}(M) \sum_{n \in \mathbb{N}} \frac{1}{n!} \mathcal{T}(N)^{n} = \sum_{s} \sum_{n \in \mathbb{N}} \sum_{t_{1}, \dots, t_{n}} \frac{a_{s} \times \prod_{k} b_{t_{k}}}{n!} \cdot s[t_{1}, \dots, t_{n}]$ $\mathcal{T}(\lambda x.M) \coloneqq \lambda x.\mathcal{T}(M)$ $\mathcal{T}(\bot) \coloneqq 0$

We need: multisets as arguments, sums of terms.

Resource terms:

$$s, t, \dots := x \mid \lambda x.s \mid (s) [t_1, \dots, t_n].$$

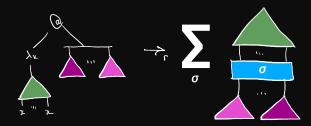
Resource reduction, featuring a multilinear substitution:



Resource terms:

$$s, t, \dots := x \mid \lambda x.s \mid (s) [t_1, \dots, t_n].$$

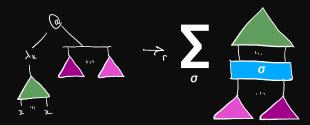
Resource reduction, featuring a multilinear substitution:



Resource terms:

$$s, t, \dots := x \mid \lambda x.s \mid (s) [t_1, \dots, t_n].$$

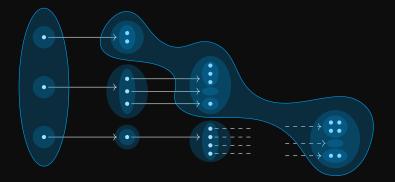
Resource reduction, featuring a multilinear substitution:



Excellent properties (confluence, normalisation)!

The resource λ -calculus

Finally, $\mathbf{S} \longrightarrow_{\mathbf{r}} \mathbf{T}$ denotes the pointwise reduction (through $\longrightarrow_{\mathbf{r}}^{*}$) of possibly infinite sums of resource terms.



nf(S) is the pointwise normal form of S.

 $\mathcal{T}(\mathrm{BT}(M)) = \mathrm{nf}(\mathcal{T}(M)).$

Historically, a "semantic" motivation: to approximate the total information generated by *M* using finite pieces of information

("The total information generated by *M*": the **Böhm tree** of *M*.)

Historically, a "semantic" motivation: to approximate the total information generated by *M* using finite pieces of information

("The total information generated by *M*": the **Böhm tree** of *M*.)

Here, a "syntactic" motivation:

to approximate the total dynamics ("information flow") of *M* using pieces of finite dynamics ("finite information flows")

Theorem (Vaux'17):

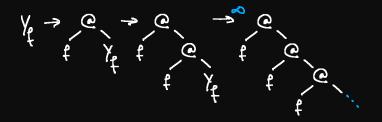
If $M \longrightarrow_{\beta \perp}^{*} N$ then $\mathcal{T}(M) \longrightarrow_{\mathrm{r}} \mathcal{T}(N)$.

This is not enough: we can't talk about BT(M)...

- We still don't know what $\mathcal{T}(BT(M))$ is.
- BT(*M*) may be infinitely far from *M*.

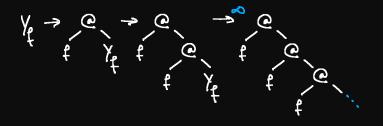
The (001-)infinitary λ -calculus

We want possibly infinite terms and reductions of a certain shape:



The (001-)infinitary λ -calculus

We want possibly infinite terms and reductions of a certain shape:



Theorem (Kennaway et al.'97):

 $\longrightarrow_{\beta\perp}^{001}$ is confluent, and the unique normal form of any $M \in \Lambda_{\perp}^{001}$ through $\longrightarrow_{\beta\perp}^{001}$ is BT(*M*).

ONE APPROXIMATION THEOREM TO RULE THEM ALL

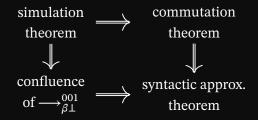
 $\mathcal{T} : \Lambda_{\perp}^{001} \to \mathbb{S}^{\Lambda_{r}}$ is defined (almost) as on finite terms (!).

ONE APPROXIMATION THEOREM TO RULE THEM ALL

 $\mathcal{T}: \Lambda_{\perp}^{001} \to \mathbb{S}^{\Lambda_{r}}$ is defined (almost) as on finite terms (!).

"Simulation" theorem (C.-V.A.'23, C.'24): If $M \longrightarrow_{\beta \perp}^{001} N$ then $\mathcal{T}(M) \longrightarrow_{\mathbf{r}} \mathcal{T}(N)$.

All the previous ones are easy consequences:



Corollary

M has a HNF through $\longrightarrow_{\beta}^{*}$ or $\longrightarrow_{\beta}^{001}$ iff the head reduction strategy terminates on *M* iff nf($\mathcal{T}(M)$) $\neq 0$.

Corollary The Genericity lemma.

Corollary

BT : $\Lambda_{\perp}^{001} \rightarrow \Lambda_{\perp}^{001}$ is Scott-continuous.

Corollary

 $\mathcal B$ is a λ -theory

THE BONUSES

WHAT I'VE BEEN WORKING ON (1)

Let's be lazy:

head normal forms \rightarrow weak head normal forms Böhm trees \rightarrow Lévy-Longo trees $\Lambda_{\perp}^{001} \rightarrow \Lambda_{\perp}^{101}$ $\rightarrow \beta_{\perp}^{001} \rightarrow \rightarrow \beta_{\perp}^{101}$

Example: $Y_{K} \longrightarrow_{\beta}^{*} \lambda x. Y_{K}$ is such that:

 $BT(Y_{K}) = \bot \qquad LLT(Y_{K}) = \lambda x_{0}.\lambda x_{1}.\lambda x_{2}...$

The lazy resource λ-calculus:

$$s, t, \dots := x \mid \lambda x.s \mid \mathbf{0} \mid (s)[t_1, \dots, t_n],$$

with $(0)\bar{t} \longrightarrow_{\mathrm{r}} 0$ and $\ell \mathcal{T}(\lambda x.M) \coloneqq \lambda x.\ell \mathcal{T}(M) + 0$.

Theorem (simulation)

If $M \longrightarrow_{\beta \perp}^{101} N$ then $\ell \mathcal{T}(M) \longrightarrow_{\ell r} \ell \mathcal{T}(N)$.

Corollary (commutation) $nf(\ell \mathcal{T}(M)) = \ell \mathcal{T}(LLT(M)).$ The lazy resource λ-calculus:

$$s, t, \dots := x \mid \lambda x.s \mid \mathbf{0} \mid (s)[t_1, \dots, t_n],$$

with $(0)\bar{t} \longrightarrow_{\mathrm{r}} 0$ and $\ell \mathcal{T}(\lambda x.M) \coloneqq \lambda x.\ell \mathcal{T}(M) + 0$.

Theorem (simulation) If $M \longrightarrow_{\beta \perp}^{101} N$ then $\ell \mathcal{T}(M) \longrightarrow_{\ell r} \ell \mathcal{T}(N)$. **Corollary (commutation)**

 $nf(\ell \mathcal{T}(M)) = \ell \mathcal{T}(LLT(M)).$

Theorem (Severi-de Vries'05) Only BT and LLT are Scott-continuous.

001-infinitary λ -terms, definition 1:

$x \in \mathcal{V}$	$x \in \mathcal{V}$	$M \in \Lambda^{001}_{\perp}$	
$\overline{x\in\Lambda_{\perp}^{001}}$	$\lambda x.M$	$\in \Lambda_{\perp}^{001}$	$\bot \in \Lambda^{001}_{\bot}$
$M\in\Lambda_{\!\perp}^{001}$	$\triangleright N \in$	Λ^{001}_{ot}	$N \in \Lambda_{\perp}^{001}$
$MN \in \Lambda^{001}_{\perp}$			$\triangleright N \in \Lambda^{001}_{\perp}$

and we quotient by α -equivalence.

001-infinitary λ -terms, definition 2:

 $\Lambda^{001}_{\perp} \coloneqq \mathbb{V}Y.\mathbb{V}X.\mathcal{V} + (\mathcal{V} \times X) + (X \times Y) + \bot$

in the category of nominal sets (C., FICS'24).

Is the linear approximation conservative?

Counterexample

There are $A, \overline{A} \in \Lambda^{001}$ such that $\mathcal{T}(A) \longrightarrow_{\mathrm{r}} \mathcal{T}(\overline{A})$ but there is no reduction $A \longrightarrow_{\beta}^{001} \overline{A}$.

(C. and V.A., preprint)

AND ALSO ...

What I'm working on:

- non-wellfounded proofs (with Alexis)
 - coinductive presentation of cut-elimination
 - model checking as circular proof search
 - natural deduction style?
- refined or extended approximations (with Giulio, Alexis)
 - Böhm trees with data on infinite branches
 - Λµ
- topological dynamics (with Marseille people)

What I'd like to work on:

 links between all that and automata/languages (with Alexis, Paul-André, and?)

Thanks for your attention!