
The missing ingredient in the linear
approximation of the λ-calculus
and other autobiographical stuff

Rémy Cerda, CNRS, IRIF
(hidden in office 3057 but please visit)

Journée de rentrée PPS
Paris, Nov. 28, 2024

Contents

The main story

Approximating the λ-calculus?

What’s missing

Approximating the λ-calculus!

Everything we want comes as corollaries

The bonuses

What I’ve been working on

What I’m working on

What I’d like to work on

1/18

The main story

Approximating the λ-calculus?

Historically, a “semantic” motivation:
to approximate the total information generated by𝑀
using finite pieces of information

(“The total information generated by𝑀”: the Böhm tree of𝑀.)

Here, a “syntactic” motivation:
to approximate the total dynamics (“information flow”) of𝑀
using pieces of finite dynamics (“finite information flows”)

2/18

Approximating the λ-calculus?

Historically, a “semantic” motivation:
to approximate the total information generated by𝑀
using finite pieces of information

(“The total information generated by𝑀”: the Böhm tree of𝑀.)

Here, a “syntactic” motivation:
to approximate the total dynamics (“information flow”) of𝑀
using pieces of finite dynamics (“finite information flows”)

2/18

The continuous approximation

“Syntactic” approximation theorem:

BT(𝑀) = lim { finite pieces of information
generated by𝑀 }

=⨆{ β⊥-normal λ⊥-term
|||||

𝑀 ⟶∗
𝛽 } .

3/18

The continuous approximation

“Syntactic” approximation theorem:

BT(𝑀) = lim { finite pieces of information
generated by𝑀 }

=⨆{ β⊥-normal λ⊥-term
|||||

𝑀 ⟶∗
𝛽 } .

3/18

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀))nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → ? is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠
𝑎𝑠 ⋅ 𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛

𝑎𝑠×∏𝑘 𝑏𝑡𝑘
𝑛!

⋅ 𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/18

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀))

≃ nf(𝒯(𝑀)).

... where 𝒯 ∶ Λ⊥ → ? is defined by
𝒯(𝑥) ≔ 𝑥

𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠
𝑎𝑠 ⋅ 𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛

𝑎𝑠×∏𝑘 𝑏𝑡𝑘
𝑛!

⋅ 𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/18

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).

... where 𝒯 ∶ Λ⊥ → ? is defined by
𝒯(𝑥) ≔ 𝑥

𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠
𝑎𝑠 ⋅ 𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛

𝑎𝑠×∏𝑘 𝑏𝑡𝑘
𝑛!

⋅ 𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/18

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → ? is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀)

= ∑
𝑠
𝑎𝑠 ⋅ 𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛

= ∑
𝑠
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛

𝑎𝑠×∏𝑘 𝑏𝑡𝑘
𝑛!

⋅ 𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0

We need: multisets as arguments, sums of terms.

4/18

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → ? is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀) = ∑

𝑠
𝑎𝑠 ⋅ 𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛 = ∑

𝑠
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛

𝑎𝑠×∏𝑘 𝑏𝑡𝑘
𝑛!

⋅ 𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0

We need: multisets as arguments, sums of terms.

4/18

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

BT(𝑀) ≃ nf (∑ the multilinear
approximants of𝑀)

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).
... where 𝒯 ∶ Λ⊥ → is defined by

𝒯(𝑥) ≔ 𝑥
𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.𝒯(𝑀) = ∑

𝑠
𝑎𝑠 ⋅ 𝜆𝑥.𝑠

𝒯(𝑀𝑁) ≔ 𝒯(𝑀) ∑
𝑛∈ℕ

1
𝑛!
𝒯(𝑁)𝑛 = ∑

𝑠
∑
𝑛∈ℕ

∑
𝑡1,…,𝑡𝑛

𝑎𝑠×∏𝑘 𝑏𝑡𝑘
𝑛!

⋅ 𝑠[𝑡1,… , 𝑡𝑛]

𝒯(⊥) ≔ 0
We need: multisets as arguments, sums of terms.

4/18

The resource λ-calculus

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

Excellent properties (confluence, normalisation)!

5/18

The resource λ-calculus

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

Excellent properties (confluence, normalisation)!

5/18

The resource λ-calculus

Resource terms:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | (𝑠) [𝑡1,… , 𝑡𝑛].

Resource reduction, featuring a multilinear substitution:

Excellent properties (confluence, normalisation)!

5/18

The resource λ-calculus

Finally, 𝐒 −↠r 𝐓 denotes the pointwise reduction (through⟶∗
r)

of possibly infinite sums of resource terms.

nf(𝐒) is the pointwise normal form of 𝐒.
6/18

The linear approximation

“Commutation” theorem (Ehrhard-Regnier’06):

𝒯(BT(𝑀)) = nf(𝒯(𝑀)).

7/18

Approximating the λ-calculus?

Historically, a “semantic” motivation:
to approximate the total information generated by𝑀
using finite pieces of information

(“The total information generated by𝑀”: the Böhm tree of𝑀.)

Here, a “syntactic” motivation:
to approximate the total dynamics (“information flow”) of𝑀
using pieces of finite dynamics (“finite information flows”)

8/18

Approximating the λ-calculus?

Historically, a “semantic” motivation:
to approximate the total information generated by𝑀
using finite pieces of information

(“The total information generated by𝑀”: the Böhm tree of𝑀.)

Here, a “syntactic” motivation:
to approximate the total dynamics (“information flow”) of𝑀
using pieces of finite dynamics (“finite information flows”)

8/18

What’s missing

Theorem (Vaux’17):
If𝑀 ⟶∗

𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

This is not enough: we can’t talk about BT(𝑀)...

• We still don’t know what 𝒯(BT(𝑀)) is.
• BT(𝑀)may be infinitely far from𝑀.

9/18

The (001-)infinitary λ-calculus

We want possibly infinite terms and reductions of a certain shape:

Theorem (Kennaway et al.’97):
⟶001

𝛽⊥ is confluent, and the unique normal form of any𝑀 ∈ Λ001
⊥

through⟶001
𝛽⊥ is BT(𝑀).

10/18

The (001-)infinitary λ-calculus

We want possibly infinite terms and reductions of a certain shape:

Theorem (Kennaway et al.’97):
⟶001

𝛽⊥ is confluent, and the unique normal form of any𝑀 ∈ Λ001
⊥

through⟶001
𝛽⊥ is BT(𝑀).

10/18

One approximation theorem to rule them all

𝒯 ∶ Λ001
⊥ → 𝕊Λr is defined (almost) as on finite terms (!).

“Simulation” theorem (C.-V.A.’23, C.’24):
If𝑀 ⟶001

𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

All the previous ones are easy consequences:

simulation
theorem

commutation
theorem

confluence
of⟶001

𝛽⊥

syntactic approx.
theorem

11/18

One approximation theorem to rule them all

𝒯 ∶ Λ001
⊥ → 𝕊Λr is defined (almost) as on finite terms (!).

“Simulation” theorem (C.-V.A.’23, C.’24):
If𝑀 ⟶001

𝛽⊥ 𝑁 then 𝒯(𝑀) −↠r 𝒯(𝑁).

All the previous ones are easy consequences:

simulation
theorem

commutation
theorem

confluence
of⟶001

𝛽⊥

syntactic approx.
theorem

11/18

(Arguably) easier proofs, in a unified setting

Corollary
𝑀 has a hnf through⟶∗

𝛽 or⟶001
𝛽

iff the head reduction strategy terminates on𝑀
iff nf(𝒯(𝑀)) ≠ 0.

Corollary
The Genericity lemma.

Corollary
BT ∶ Λ001

⊥ → Λ001
⊥ is Scott-continuous.

Corollary
ℬ is a λ-theory

12/18

The bonuses

What I’ve been working on (1)

Let’s be lazy:

head normal forms → weak head normal forms
Böhm trees → Lévy-Longo trees

Λ001
⊥ → Λ101

⊥
⟶001

𝛽⊥ → ⟶101
𝛽⊥

Example: YK ⟶∗
𝛽 𝜆𝑥.YK is such that:

BT(YK) = ⊥ LLT(YK) = 𝜆𝑥0.𝜆𝑥1.𝜆𝑥2.…

13/18

What I’ve been working on (1)

The lazy resource λ-calculus:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝟘 | (𝑠) [𝑡1,… , 𝑡𝑛],

with (𝟘) ̄𝑡 ⟶r 0 and ℓ𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.ℓ𝒯(𝑀) + 𝟘.

Theorem (simulation)
If𝑀 ⟶101

𝛽⊥ 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

Corollary (commutation)
nf(ℓ𝒯(𝑀)) = ℓ𝒯(LLT(𝑀)).

Theorem (Severi-de Vries’05)
Only BT and LLT are Scott-continuous.

14/18

What I’ve been working on (1)

The lazy resource λ-calculus:

𝑠, 𝑡, ... ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝟘 | (𝑠) [𝑡1,… , 𝑡𝑛],

with (𝟘) ̄𝑡 ⟶r 0 and ℓ𝒯(𝜆𝑥.𝑀) ≔ 𝜆𝑥.ℓ𝒯(𝑀) + 𝟘.

Theorem (simulation)
If𝑀 ⟶101

𝛽⊥ 𝑁 then ℓ𝒯(𝑀) −↠ℓr ℓ𝒯(𝑁).

Corollary (commutation)
nf(ℓ𝒯(𝑀)) = ℓ𝒯(LLT(𝑀)).

Theorem (Severi-de Vries’05)
Only BT and LLT are Scott-continuous.

14/18

What I’ve been working on (2)

001-infinitary λ-terms, definition 1:

𝑥 ∈ 𝒱
𝑥 ∈ Λ001

⊥

𝑥 ∈ 𝒱 𝑀 ∈ Λ001
⊥

𝜆𝑥.𝑀 ∈ Λ001
⊥ ⊥ ∈ Λ001

⊥

𝑀 ∈ Λ001
⊥ ▹ 𝑁 ∈ Λ001

⊥

𝑀𝑁 ∈ Λ001
⊥

𝑁 ∈ Λ001
⊥

▹ 𝑁 ∈ Λ001
⊥

and we quotient by α-equivalence.

001-infinitary λ-terms, definition 2:

Λ001
⊥ ≔ ν𝑌.µ𝑋.𝒱 + (𝒱 × 𝑋) + (𝑋 × 𝑌) + ⊥

in the category of nominal sets (C., FICS’24).

15/18

What I’ve been working on (3)

Is the linear approximation conservative?

Counterexample
There are 𝐴, ̄𝐴 ∈ Λ001 such that 𝒯(𝐴) −↠r 𝒯(̄𝐴)
but there is no reduction 𝐴⟶001

𝛽 ̄𝐴.

(C. and V.A., preprint)

16/18

And also...

What I’m working on:

• non-wellfounded proofs (with Alexis)
• coinductive presentation of cut-elimination
• model checking as circular proof search
• natural deduction style?

• refined or extended approximations (with Giulio, Alexis)
• Böhm trees with data on infinite branches
• Λ𝜇

• topological dynamics (with Marseille people)

What I’d like to work on:

• links between all that and automata/languages
(with Alexis, Paul-André, and?)

17/18

Thanks for your attention!
18/18

	The main story
	Approximating the λ-calculus?
	What's missing
	Approximating the λ-calculus!
	Everything we want comes as corollaries

	The bonuses
	What I've been working on
	What I'm working on
	What I'd like to work on

